ESTUDIO DEL CRECIMIENTO ECONÓMICO DE CASTILLA Y LEÓN. ÍNDICES DIVISIA, ANÁLISIS SHIFT-SHARE Y TÉCNICAS DE REGRESIÓN

Paula FERNÁNDEZ GONZÁLEZ*a Rigoberto PÉREZ SUÁREZ*b

*Universidad de Oviedo, Oviedo

El crecimiento económico es el resultado de la compleja interacción de una serie de fuerzas. En una primera aproximación, el crecimiento económico de cierta región, medido como ratio o diferencia en términos de empleo, valor añadido u otra variable económica, puede ser justificado por factores tales como participación en el crecimiento de la economía nacional, estructura regional económica y ventaja comparativa de la región. Estos factores son ampliamente conocidos en la literatura regional como efectos nacional, sectorial y regional, respectivamente.

Existen numerosas técnicas que cuantifican y descomponen los cambios experimentados en cierta magnitud y que pueden proveer de información relevante para la evaluación y planificación de ciertas políticas socio-económicas. En este trabajo, se presenta la metodología que ofrecen los índices Divisia como instrumentos que permiten realizar dicha descomposición. A continuación, se lleva a cabo la descomposición de la variación experimentada por el Valor Añadido Bruto castellano-leonés en el período 1986-2001. Finalmente, se emplea la técnica habitual del análisis shift-share así como técnicas de regresión para observar las posibles divergencias en los resultados obtenidos a través de las distintas metodologías.

1. METODOLOGÍA

La metodología shift-share, las técnicas de regresión y los índices Divisia entre otros, son de gran utilidad en la descomposición aditiva de la variación de una magnitud en varios efectos. Puesto que el objetivo de este trabajo es el análisis del VAB regional, será ésta la magnitud sobre la que se aplicarán dichas técnicas.

1.1. Índices Divisia

Considerado un determinado nivel de desagregación sectorial, los índices Divisia permiten descomponer aditivamente la variación total experimentada por el VAB regional en un determinado período de la forma:

$$Rtot = Rreg + R sec + Rnac$$

donde Rtot, Reg, Rsec y Rnac denotan los efectos total, regional, sectorial y nacional, respectivamente.

Definamos las siguientes variables en el período t:

Y_t: VAB nacional en el período t.

Yg_t: VAB de la región g en el período t.

Y_{it}: VAB del sector i en el período t.

1

^{*}a pfgonzal@correo.uniovi.es.

^{*}b rigo@aulanet.uniovi.es.

 $S_{i,t}$: Participación del sector i en el VAB de nacional en el período t. $(S_{i,t} = \frac{Y_{i,t}}{Y_t})$

 Sg_t : Participación de la región g en el VAB nacional en el período t. $(Sg_t = \frac{Yg_t}{Y_t})$

 $Sg_{i,t}$: Participación del sector i en la región g con respecto a la producción nacional de dicho sector en el período t. $(Sg_{i,t} = \frac{Yg_{i,t}}{Y_{i,t}})$

El VAB regional puede ser expresado en términos de datos sectorialmente desagregados de la forma:

$$Yg_{t} = \sum_{i=1}^{k} Sg_{i,t} S_{i,t} Y_{t}$$
 (1)

donde, dado un nivel de desagregación sectorial, el sumatorio hace referencia a todos los sectores considerados desde el primero hasta el k-ésimo.

Diferenciando con respecto al tiempo e integrando entre los períodos 0 y T, se obtiene la siguiente expresión:

$$Yg_{T} - Yg_{0} = \int_{0}^{T} \sum_{i=1}^{k} Sg'_{i,t} S_{i,t} Y_{t} dt + \int_{0}^{T} \sum_{i=1}^{k} Sg_{i,t} S'_{i,t} Y_{t} dt + \int_{0}^{T} \sum_{i=1}^{k} Sg_{i,t} S_{i,t} Y'_{t} dt$$
(2)

Introduciendo los efectos mencionados en la página anterior, la Ecuación (2) puede ser rescrita a través de las expresiones (3) y (4):

$$Rtot = Yg_{T} - Yg_{0} = \int_{0}^{T} \sum_{i=1}^{k} \frac{Sg'_{i,t}}{Sg_{i,t}} Yg_{i,t} dt + \int_{0}^{T} \frac{S'_{i,t}}{S_{i,t}} Yg_{i,t} dt + \int_{0}^{T} \frac{Y'_{t}}{Y_{t}} Yg_{i,t} dt = Rsec + Rreg + Rnac$$
 (3)

$$Rtot = Yg_T - Yg_0 = \int_{0}^{T} \sum_{i=1}^{k} Sg'_{i,t} Y_{i,t} dt + \int_{0}^{T} \sum_{i=1}^{k} S'_{i,t} Sg_{i,t} Y_t dt + \int_{0}^{T} Y'_t Yg_t dt = Rsec + Rreg + Rnac$$
 (4)

En un nivel empírico, no es posible disponer de información de estas variables de forma continua en el tiempo y, por tanto, será preciso transformar el problema de la trayectoria de la integral en uno paramétrico. Para ello, se considerarán las siguientes condiciones:

$$\min \left\{ Sg_{i,0}, Sg_{i,T} \right\} \le Sg_{i,t} \le \max \left\{ Sg_{i,0}, Sg_{i,T} \right\}$$
 (5)

$$\min \left\{ Yg_{i,0}, Yg_{i,T} \right\} \le Yg_{i,t} \le \max \left\{ Yg_{i,0}, Yg_{i,T} \right\}$$
 (6)

$$\min \left\{ S_{i,0}, S_{i,T} \right\} \le S_{i,t} \le \max \left\{ S_{i,0}, S_{i,T} \right\}$$
(7)

$$\min \{ Yg_0, Y_{i,T} \} \le Yg_t \le \max \{ Yg_0, Yg_T \}$$
 (8)

$$\min \left\{ Y_0, Y_T \right\} \leq Y_t \leq \max \left\{ Y_0, Y_T \right\}$$

$$0 \leq t \leq T$$

$$(9)$$

En general, son fácilmente asumibles puesto que únicamente limitan los valores que pueden tomar las distintas variables a unas bandas que son determinadas por los períodos inicial y final.

El cumplimiento de estas condiciones permite encontrar un conjunto de parámetros que satisfagan ciertas expresiones, y que según hayan sido derivadas de las Ecuaciones (3) ó (4) se denominan método paramétrico Divisia 1 (PDM1) o método paramétrico Divisia 2 (PDM2), respectivamente. En el caso de PDM1, dichas expresiones son las siguientes:

$$Rreg = \sum_{i=1}^{k} \left[Yg_{i,0} - \beta_i \left(Yg_{i,T} - Yg_{i,0} \right) \right] Ln \left(\frac{Sg_{i,T}}{Sg_{i,0}} \right)$$
(10)

$$R \sec = \sum_{i=1}^{k} \left[Y g_{i,0} - \tau_i \left(Y g_{i,T} - Y g_{i,0} \right) \right] Ln \left(\frac{S_{i,T}}{S_{i,0}} \right)$$
(11)

$$Rnac = \left[Yg_0 - \alpha(Yg_T - Yg_0)\right] Ln\left(\frac{Y_T}{Y_0}\right)$$
(12)

donde $0 \le \alpha$, β_i , $\tau_i \le 1$.

En el caso del PDM2, las expresiones resultantes son:

$$Rreg = \sum_{i=1}^{k} [Y_{i,0} - \beta_i (Y_{i,T} - Y_{i,0})] (Sg_{i,T} - Sg_{i,0})$$
(13)

$$R \sec = \sum_{i=1}^{k} \left[Sg_{i,0} Y_0 - \tau_i \left(Sg_{i,T} Y_T - Sg_{i,0} Y_0 \right) \right] \left(S_{i,T} - S_{i,0} \right)$$
(14)

Rnac =
$$[Sg_0 - \alpha(Sg_T - Sg_0)](Y_T - Y_0)$$
 (15)

donde $0 \le \alpha$, β_i , $\tau_i \le 1$.

En la descomposición aditiva llevada a cabo a través de los índices Divisia, cada una de las componentes es estimada de forma independiente, de modo que, en general, la suma de todas ellas no coincidirá con la variación total experimentada por la magnitud considerada. Denotando por D_a el término residual, la variación global experimentada en cierta magnitud podría ser descompuesta del modo siguiente:

$$Rtot = Rreg + R sec + Rnac + D_a$$
 (16)

Si bien un valor relativamente pequeño de este término residual no garantizaría la bondad de la descomposición, un elevado valor significaría que la variación observada en el VAB regional no resulta bien explicada por los efectos definidos en las Ecuaciones (3)-(4) y, como consecuencia, invalidaría el propósito del estudio.

Los valores de los parámetros pueden ser considerados ponderaciones de las variables correspondientes en los períodos 0 y T de la descomposición. Puesto que estas ponderaciones pueden ser asignadas de múltiples formas, existirán múltiples métodos específicos de descomposición. Los más utilizados son:

1) Método paramétrico Divisia 1 de Laspeyres (LAS-PDM1)¹.

Es un caso especial del PDM1 con $\alpha = \beta_i = \tau_i = 0$.

2) Método paramétrico Divisia 1 de media simple (AVE-PDM1)².

Constituye un caso especial del PDM1 con $\alpha = \beta_i = \tau_i = 0.5$. En su forma multiplicativa, este método ha sido propuesto por G. Boyd³.

3) Método paramétrico Divisia 2 de Laspeyres (LAS-PDM2).

Es un caso especial del PDM2 con $\alpha = \beta_i = \tau_i = 0$.

En su forma aditiva, este método es similar al propuesto por R.B. Howarth⁴ y C. Jenne⁵.

4) Método paramétrico Divisia 2 de media simple (AVE-PDM2).

Constituye un caso especial del PDM2 con $\beta_i = \tau_i = 0.5$.

Es un método equivalente al propuesto por W. Reitler⁶.

5) Método paramétrico Divisia de pesos adaptativos⁷ (AWT-PDM).

¹ Este método es conocido como « Laspeyres» porque todos los pesos están asignados al año 0.

² El término "media simple" se refiere a la asignación del pesos idénticos a los años 0 y T.

³ Boyd G., McDonald J.F., Ross M. y Hanson D.A. (1987): Separating the Changing Composition of US Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach", *The Energy Journal*, Vol. 8, No. 2, pp. 77-96.

⁴ Howarth R.B., Schipper L., Duerr P.A. y Strøm S. (1991): Manufacturing Energy Use in Eight OECD Countries, *Energy Economics*, Vol. 13, No. 2, pp. 135-142.

⁵ Jenne C. y Cattell R. (1983): Electricity Intensity in UK Industry, *Energy Economics*, Vol. 5, No. 2, pp. 114-123. ⁶ Reitler W., Rudolph M. y Schaefer H. (1987): Analysis of the Factors Influencing Energy Consumption in Industry: A Revised Method, *Energy Economics*, Vol. 9, No. 3, pp. 145-148.

Los valores de los parámetros se obtienen al igualar las ecuaciones (10) y (13), (11) y (14), y (12) y (15). Puede demostrarse que los resultados de la descomposición son los mismos independientemente del método paramétrico Divisia general utilizado⁸. Las ponderaciones adoptan las siguientes expresiones:

$$\alpha = \frac{Sg_0(Y_T - Y_0) - Yg_0Ln(Y_T/Y_0)}{(Sg_0 - Sg_T)(Y_T - Y_0) - (Yg_0 - Yg_T)Ln(Y_T/Y_0)}$$
(17)

$$\beta_{i} = \frac{Sg_{i,0}Y_{0}(S_{i,T} - S_{i,0}) - Yg_{i,0}Ln(S_{i,T}/S_{i,0})}{(Sg_{i,0}Y_{0} - Sg_{i,T}Y_{T})(S_{i,T} - S_{i,0}) - (Yg_{i,0} - Yg_{i,T})Ln(S_{i,T}/S_{i,0})}$$
(18)

$$\tau_{i} = \frac{Y_{i,0}(Sg_{i,T} - Sg_{i,0}) - Yg_{i,0}Ln(Sg_{i,T}/Sg_{i,0})}{(Y_{i,0} - Y_{i,T})(Sg_{i,T} - Sg_{i,0}) - (Yg_{i,0} - Yg_{i,T})Ln(Sg_{i,T}/Sg_{i,0})}$$
(19)

1.2. Análisis shift-share

El análisis shift-share es una técnica empleada habitualmente para llevar a cabo estudios de desarrollo regional. Desde un punto de vista descriptivo, permite descomponer aditivamente la variación global en el VAB regional entre dos períodos considerados.

Defininamos las siguientes variables:

Y_t: VAB nacional en el período t.

Yg_t: VAB de la región g en el período t.

Y_{i,t}: VAB del sector i en el período t.

Sgi,t: Participación del sector i en la región g con respecto a la producción nacional de dicho sector en el

período t.
$$(Sg_{i,t} = \frac{Yg_{i,t}}{Y_{i,t}})$$

 r_t : Tasa de variación del VAB entre los períodos t-1 y t. $(r_{t'} = \frac{Y_t}{Y_{t-1}} - 1)$

 $r_{i,t}$: Tasa de variación del VAB del sector i entre los períodos t-1 y t. $(r_{i,t} = \frac{Y_{i,t}}{Y_{i,t-1}} - 1)$

rgi,t: Tasa de variación del VAB del sector i en la región g entre los períodos t-1 y t.

$$(rg_{i,t} = \frac{Yg_{i,t}}{Yg_{i,t-1}} - 1)$$

Entonces, la variación en el VAB de un sector i en la región g puede ser expresada como⁹:

$$ETg_{i} = \sum_{t-l \to t} Yg_{i} = Yg_{i,t} - Yg_{i,t-l} = r_{t}Yg_{i,t-l} + (r_{i,t} - r_{t})Yg_{i,t-l} + (rg_{i,t} - r_{i,t})Yg_{i,t-l}$$
(20)

donde los efectos nacional, sectorial y regional para cada sector i en la región de estudio g toman las siguientes expresiones:

$$ENg_i = r_t Y g_{i,t-1}$$
 (21)

$$ESg_i = (r_{i,t} - r_t)Yg_{i,t-1}$$
(22)

$$ERg_{i} = (rg_{i,t} - r_{i,t})Yg_{i,t-1}$$

$$(23)$$

Si se pretende obtener los efectos agregados para una región entre los períodos t y t', independientemente del sector industrial considerado, es posible aplicar las siguientes expresiones:

⁷ El término "adaptativos" se refiere al hecho de que los parámetros no se encuentran prefijados, sino que vienen determinados por los niveles observados en los años considerados.

⁸ Ang B.W. (1994): Decomposition of Industrial Energy Consumption: The Energy Intensity Approach, *Energy Economics*, Vol. 16, No. 3, pp. 163-174.

⁹ Pérez R. y Delgado F.J. (2000): Análisis Espacial del Crecimiento Regional: El Proyecto Atlas Económico-Digital de Asturias. Documentos de trabajo 1/2000, Hispalink-Asturias.

$$Rtot = \sum_{i=1}^{k} ETg_i$$
 (24)

$$Rnac = \sum_{i=1}^{k} ENg_i$$
 (25)

$$Rstr = \sum_{i=1}^{k} ESg_i$$
 (26)

$$Rreg = \sum_{i=1}^{k} ERg_i$$
 (27)

donde seguirá verificándose la igualdad:

$$Rtot = Rnac + Rstr + Rsec$$
 (28)

1.3. Técnica de regresión

Una vez presentada una base estadística para técnicas predictivas en términos de análisis de varianza, Berzeg¹⁰ demostró que la identidad de la técnica shift-share puede ser formalizada como un modelo lineal de corte temporal:

$$rg_{i,t} = \beta_i^0 + \beta_i^1 B_{i,t} + \beta_i^2 Gg_t + e_{i,t}^{*g}$$
(29)

donde el término independiente β_i^0 recoge la tasa nacional de crecimiento (r), la variable $B_{i,t}$ recoge la diferencia entre la tasa de crecimiento nacional del sector i y la tasa media de crecimiento nacional (r_{i,t}r_t), y Gg_t recoge la diferencia entre las tasas de crecimiento regional y nacional (rg_t-r_t).

La diferencia entre la tasa de crecimiento regional y la tasa nacional de crecimiento del sector i (rg_t-r_{i,t}) viene recogida por el término de error $(e_{i,t}^{*g})$ que es tratado, no como una componente sistemática, sino como un término aleatorio. Si este término se distribuye normalmente, el cociente entre los coeficientes estimados y las desviaciones estándar seguirán una t de Student y las medidas tradicionales de ajuste y bondad serán apropiadas.

Sin embargo, las expresiones (20) y (29) no son equivalentes por dos motivos. En primer lugar, el modelo (29) está expresado en términos de tasas de crecimiento mientras que la ecuación (20) viene en las unidades en que es expresada la magnitud considerada. En segundo lugar, el término de error en la expresión (29) será heterocedástico y, por tanto, B_{i,t} y Gg_t no serán exactamente las diferencias entre las tasas de crecimiento mencionadas en el párrafo anterior. Esto puede solventarse mediante el empleo de mínimos cuadrados ponderados y Berzeg (1978) propone como función de pesos la siguiente:

$$wg_{i,t} = \frac{Yg_{i,t}}{Y_{i,t}}$$
 (30)

Sin embargo, es posible evitar esta circunstancia si la regresión se realiza de la siguiente forma:

$$rg_{i,t} = \gamma_0^i + \gamma_1^i B_{i,t} + \gamma_2^i Hg_{i,t} + e_{i,t}^g$$
(31)

donde $Hg_{i,t}$ hace referencia a $(rg_{i,t}$ - $r_{i,t})$ y $e_{i,t}^g$ es el término de error.

Una vez obtenidos los coeficientes $\hat{\beta}_i$ o $\hat{\gamma}_i$ según que se trate de la ecuación (29) ó (31), los efectos nacional, sectorial y regional pueden ser estimados del siguiente modo:

$$ESg_{i,t} = \hat{\beta}_{1}^{i}(r_{i} - r)Yg_{i,t-1} \qquad \acute{o} \qquad ESg_{i,t} = \hat{\gamma}_{1}^{i}(r_{i} - r)Yg_{i,t-1}$$
(33)

$$ERg_{i,t} = \hat{\beta}_{2}^{i}(rg - r)Yg_{i,t-1} \quad \text{\'o} \qquad ERg_{i,t} = \hat{\gamma}_{2}^{i}(rg_{i} - r_{i})Yg_{i,t-1}$$
(34)

¹⁰ Berzeg K. (1978): The Empirical Content of Shift-Share Analysis, *Journal of Regional Science*, Vol.18, pp.

Al igual que ocurría con el análisis shift-share, es posible obtener los efectos agregados para una región entre los períodos t y t' a través de las siguientes expresiones:

$$Rtot = \sum_{i=1}^{k} \Delta_{t} Yg_{i}$$
(35)

$$Rnac = \sum_{i=1}^{k} ENg_{i}$$

$$Rstr = \sum_{i=1}^{k} ESg_{i}$$

$$Rreg = \sum_{i=1}^{k} ERg_{i}$$
(38)

$$Rstr = \sum_{i=1}^{k} ESg_i$$
 (37)

$$Rreg = \sum_{i=1}^{k} ERg_i$$
 (38)

donde el sumatorio hace referencia a los k sectores en el nivel de desagregación considerado.

2. ECONOMÍA CASTELLANO-LEONESA. UN CASO DE ESTUDIO

Se dispone de series de datos referentes al VAB de la economía castellano-leonesa y española a precios de mercado de los sectores considerados en dos niveles de desagregación, expresados en pesetas constantes de 1986¹¹. Se han considerado cuatro sectores de actividad: agricultura, industria, construcción y servicios en el espacio temporal 1986-2001¹².

Aplicados el análisis shift-share, las técnicas de regresión y los métodos AVE-PDM1 y AVE-PDM2, se obtienen las siguientes estimaciones del efecto regional para cada una de las cuatro grandes ramas de actividad consideradas (Tablas 1-4):

Agricultura	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	98793,690	97684,336	94569,714	93632,843
1988	-12594,361	-12452,939	-12399,725	-12401,470
1989	-88091,653	-87102,472	-91849,709	-91206,015
1990	-34294,887	-33909,790	-33779,486	-33779,766
1991	-26096,200	-25803,166	-26160,172	-26146,042
1992	-52257,401	-51670,603	-52775,400	-52614,782
1993	169200,232	167300,283	172635,906	169515,332
1994	-87161,977	-86183,235	-92809,264	-91793,090
1995	78190,789	77312,785	82593,762	82738,885
1996	0,732	0,724	0,675	0,675
1997	-6509,411	-6436,317	-6432,990	-6433,439
1998	40218,908	39767,290	39883,934	39842,022
1999	25858,452	25568,087	26106,706	26107,137
2000	8415,382	8320,886	8342,956	8342,163
2001	2164,023	2139,724	2138,131	2138,075
1987-2001	115836,319	114535,593	110065,040	107942,527

Tabla 1. Efecto regional estimado en la agricultura, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

¹¹ Fuente: CRE-95, INE.

¹² Hasta 1998, los datos son estimaciones, pasando a ser previsiones a partir de dicho año.

Industria	Shift-Share	Regresión*	AVE-PDM1	AVE-PDM2
1987	-9540,807	-3577,764	-9318,709	-9319,887
1988	-15403,034	-5776,076	-15070,675	-15073,263
1989	1721,321	645,489	1690,952	1690,921
1990	-34705,794	-13014,534	-34348,768	-34351,285
1991	14265,214	5349,398	14172,362	14171,277
1992	5945,630	2229,588	5946,847	5946,828
1993	15774,417	5915,343	15994,785	15996,361
1994	-8926,290	-3347,323	-8774,075	-8774,753
1995	10007,564	3752,796	9814,775	9813,649
1996	14508,931	5440,791	14379,628	14378,381
1997	-9918,101	-3719,248	-9652,604	-9653,807
1998	-2819,965	-1057,476	-2750,723	-2750,813
1999	2684,231	1006,576	2652,722	2652,682
2000	-7079,537	-2654,798	-6984,514	-6984,789
2001	-9752,520	-3657,156	-9575,129	-9575,815
1987-2001	-33238,740	-12464,394	-31823,128	-31834,313

Tabla 2. Efecto regional estimado en la industria, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

Construcción	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	-45963,092	-42348,969	-44156,370	-44195,702
1988	14351,430	13222,963	13712,048	13690,542
1989	6988,081	6438,601	6576,792	6571,811
1990	-24927,415	-22967,348	-23741,169	-23773,319
1991	-6843,141	-6305,058	-6743,245	-6744,038
1992	14153,472	13040,571	14548,835	14555,454
1993	13530,617	12466,691	13924,159	13930,704
1994	12820,951	11812,827	12710,542	12706,677
1995	-14748,536	-13588,844	-14297,859	-14305,122
1996	-10389,151	-9572,242	-10481,515	-10479,224
1997	116,097	106,969	114,971	114,970
1998	-7389,933	-6808,855	-7161,214	-7163,348
1999	-10740,903	-9896,335	-10207,881	-10214,689
2000	-9439,941	-8697,669	-9126,455	-9129,743
2001	67,205	61,920	65,497	65,497
1987-2001	-68414,258	-63034,777	-64262,863	-64369,530

Tabla 3. Efecto regional estimado en la construcción, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

Servicios	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	-74021,095	-60573,016	-72369,980	-72392,749
1988	-25904,598	-21198,276	-25314,343	-25317,936

^{*} No significativo.

-

1989	-4086,106	-3343,746	-3985,593	-3985,695
1990	-14136,754	-11568,403	-13867,590	-13868,456
1991	-13547,240	-11085,991	-13367,421	-13367,952
1992	2225,795	1821,415	2202,828	2202,815
1993	-23205,991	-18989,950	-23127,804	-23128,000
1994	-7839,924	-6415,575	-7728,806	-7728,996
1995	43635,689	35708,000	43041,782	43034,686
1996	-9651,046	-7897,654	-9569,578	-9569,733
1997	-11683,838	-9561,130	-11506,351	-11506,761
1998	-17417,985	-14253,503	-17148,554	-17149,436
1999	-6180,099	-5057,305	-6071,615	-6071,745
2000	-10362,698	-8480,014	-10211,342	-10211,630
2001	-4726,650	-3867,917	-4651,713	-4651,778
1987-2001	-176902,540	-144763,063	-173676,081	-173713,366

Tabla 4. Efecto regional estimado en los servicios, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

En primer lugar, el efecto regional ha sido negativo en todos y cada uno de los sectores en el período 1987-2001, revelando un menor crecimiento relativo del VAB regional respecto al nacional en todos ellos, respectivamente, y siendo especialmente importante en el caso del sector industrial.

En cuanto al efecto sectorial estimado para las distintas ramas de actividad:

Agricultura	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	22693,143	22609,972	24988,684	24884,879
1988	-8983,474	-8950,549	-8662,117	-8662,785
1989	-56699,909	-56492,104	-50456,038	-50173,952
1990	-3289,880	-3277,823	-3085,501	-3085,154
1991	-9440,604	-9406,004	-9000,322	-8996,746
1992	-7060,921	-7035,043	-6481,905	-6476,043
1993	842,908	839,818	1103,440	1103,051
1994	-52762,171	-52568,798	-46865,268	-46491,714
1995	-41430,003	-41278,162	-46251,611	-46606,157
1996	58179,453	57966,226	57691,564	57542,597
1997	-5070,393	-5051,810	-4944,979	-4945,212
1998	-8278,712	-8248,371	-8499,929	-8504,635
1999	-26391,425	-26294,700	-26630,386	-26656,074
2000	-7170,433	-7144,153	-7117,368	-7118,456
2001	-5482,282	-5462,190	-5399,753	-5400,246
1987-2001	-150344,704	-149793,691	-139611,489	-139586,646

Tabla 5. Efecto sectorial estimado en la agricultura, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

Industria	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	-4270,764	-5176,110	-4136,513	-4136,722
1988	-3854,555	-4671,671	-3728,796	-3728,916
1989	-7806,309	-9461,145	-7641,870	-7642,621

1990	-16232,204	-19673,220	-15606,887	-15606,381
1991	-7588,750	-9197,466	-7568,219	-7568,806
1992	-7020,046	-8508,204	-7017,215	-7017,378
1993	-18243,268	-22110,604	-18472,026	-18472,454
1994	11386,564	13800,367	11207,733	11207,159
1995	12168,787	14748,412	12077,037	12075,396
1996	-3831,643	-4643,901	-3818,477	-3818,613
1997	20046,760	24296,413	19607,409	19604,328
1998	13567,109	16443,160	13300,821	13299,165
1999	-12887,804	-15619,850	-12677,738	-12678,998
2000	-5099,692	-6180,760	-5004,166	-5004,301
2001	2653,071	3215,487	2596,850	2596,810
1987-2001	-27012,742	-32739,092	-26882,058	-26892,332

Tabla 6. Efecto sectorial estimado en la industria, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

Construcción	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	7513,965	9322,839	6693,865	6699,343
1988	12038,730	14936,873	12111,145	12093,744
1989	24062,190	29854,802	23854,891	23808,661
1990	19560,692	24269,636	18477,188	18481,727
1991	2426,558	3010,715	2374,968	2374,953
1992	-19783,059	-24545,534	-20157,188	-20167,302
1993	-15678,771	-19453,200	-16079,635	-16083,759
1994	-1259,315	-1562,476	-1270,765	-1270,839
1995	12414,675	15403,321	11994,508	11994,952
1996	-13413,142	-16642,155	-13060,830	-13057,937
1997	-5168,312	-6412,506	-5079,424	-5080,021
1998	8939,120	11091,079	8681,907	8680,516
1999	24998,781	31016,862	24223,953	24211,867
2000	14189,180	17605,012	13802,259	13799,787
2001	7102,021	8811,726	6982,981	6981,739
1987-2001	77943,311	96706,994	73549,825	73467,430

Tabla 7. Efecto sectorial estimado en la construcción, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

Servicios	Shift-Share	Regresión*	AVE-PDM1	AVE-PDM2
1987	-14522,522	9552,102	-13868,669	-13868,945
1988	-3694,303	2429,906	-3582,289	-3582,348
1989	10897,692	-7167,892	10647,858	10647,206
1990	-129,067	84,893	-126,172	-126,172

^{*} No significativo.

-

1991	10158,530	-6681,712	10015,604	10015,397
1992	28289,393	-18607,178	28198,836	28197,614
1993	28936,406	-19032,748	28877,641	28878,917
1994	14882,315	-9788,753	14695,032	14694,518
1995	3423,550	-2251,819	3412,195	3412,135
1996	-12029,414	7912,275	-11872,592	-11872,840
1997	-10437,163	6864,982	-10231,259	-10231,579
1998	-15416,779	10140,294	-15077,303	-15077,972
1999	560,446	-368,630	549,996	549,995
2000	-5329,835	3505,667	-5236,154	-5236,227
2001	-6524,936	4291,738	-6408,003	-6408,128
1987-2001	29064,313	-19116,878	29994,722	29991,571

Tabla 8. Efecto sectorial estimado en servicios, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

El efecto sectorial estimado es negativo en el caso de la agricultura y la industria y positivo en la construcción y, especialmente, en servicios. Esto es, mientras que los primeros han crecido en Castilla y León por debajo de la media nacional, los segundos lo han hecho por encima. Por tanto, agricultura e industria han contribuido negativamente al crecimiento del VAB Castellano-leonés y construcción y servicios han impulsado su crecimiento.

Por lo que se refiere a la estimación del efecto nacional para cada rama de actividad:

Agricultura	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	19543,033	12166,597	22741,169	22654,165
1988	24879,635	16906,187	24363,654	24371,193
1989	23261,107	17017,151	20013,418	20081,448
1990	15208,382	12932,877	14481,910	14493,941
1991	8061,368	12180,874	7670,832	7674,775
1992	2541,052	11257,507	2316,924	2317,757
1993	-1875,232	9349,393	-2450,279	-2452,221
1994	9885,590	15001,012	8353,455	8369,723
1995	8465,493	10630,806	8951,411	8944,565
1996	8093,242	12150,726	8737,562	8730,156
1997	15295,527	14377,977	15093,715	15095,673
1998	16521,051	14502,851	17122,976	17109,902
1999	17333,106	16131,488	17325,471	17323,819
2000	15968,603	16696,090	15989,628	15987,988
2001	18112,047	17274,586	18056,402	18055,576
1987-2001	201294,005	208576,122	198768,247	198758,459

Tabla 9. Efecto nacional estimado en la agricultura, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

Industria	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	42510,748	23478,286	42157,463	42157,050
1988	40366,394	24333,923	39909,422	39912,624
1989	38463,991	24963,261	38333,805	38330,363
1990	34369,766	25928,608	33386,912	33401,496
1991	18974,287	25434,643	19048,486	19046,919
1992	6666,103	26199,395	6662,075	6662,059
1993	-5961,109	26366,105	-5952,782	-5952,731

1994	19398,931	26114,774	19426,653	19425,585
	,			
1995	24026,299	26766,485	24320,535	24315,305
1996	21130,762	28143,971	21249,810	21247,649
1997	34886,240	29092,296	35067,724	35061,048
1998	39080,319	30434,370	39286,795	39278,453
1999	38661,023	31919,926	38484,098	38483,216
2000	35327,776	32768,356	35138,066	35138,135
2001	39543,577	33458,507	39424,603	39422,755
1987-2001	427445,107	415402,905	425943,665	425929,926

Tabla 10. Efecto nacional estimado en la industria, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

Construcción	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	13829,892	6492,171	12822,331	12845,256
1988	11452,920	5868,295	12092,109	12074,756
1989	12376,476	6827,276	13075,856	13058,348
1990	12363,573	7927,753	12261,116	12261,558
1991	7113,652	8105,061	7065,361	7065,605
1992	2446,698	8173,407	2425,438	2425,506
1993	-2152,651	8092,749	-2145,395	-2145,362
1994	6977,433	7983,763	7104,341	7102,685
1995	8927,539	8453,561	8897,239	8897,124
1996	7614,938	8620,652	7351,784	7354,368
1997	11583,492	8210,448	11495,948	11496,297
1998	12653,909	8375,957	12684,498	12682,470
1999	12448,428	8735,878	12702,623	12696,884
2000	11939,048	9412,642	12015,169	12012,997
2001	13676,158	9835,540	13801,658	13798,167
1987-2001	143251,504	121115,152	143650,076	143626,659

Tabla 11. Efecto nacional estimado en la construcción, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

Servicios	Shift-Share	Regresión	AVE-PDM1	AVE-PDM2
1987	98477,008	57412,516	96172,065	96209,512
1988	90712,830	57725,139	90016,032	90015,387
1989	87065,998	59648,517	87233,602	87215,582
1990	78611,963	62603,032	78345,339	78340,787
1991	45672,770	64628,134	45637,340	45635,905
1992	15898,277	65958,898	16013,657	16013,147
1993	-14439,870	67419,622	-14459,304	-14459,314
1994	47250,288	67145,518	47329,310	47326,582
1995	58549,339	68854,218	59174,159	59162,622
1996	51336,957	72177,931	51099,075	51099,615

1997	7	83053,217	73111,280	82673,230	82671,435
1998	3	91267,990	75028,939	90661,939	90662,647
1999)	88196,767	76867,949	88106,341	88098,839
2000)	81160,247	79466,816	80918,785	80915,901
2001	l	91278,377	81527,216	91092,679	91086,892
1987-20	001	994092,157	1029575,725	990014,249	989995,538

Tabla 12. Efecto nacional estimado en servicios, resultante de la descomposición aditiva en series temporales a través del análisis shift-share, técnicas de regresión y de los métodos AVE-PDM1 y AVE-PDM2.

En cuanto al efecto nacional, se observa un efecto positivo en las cuatro ramas de actividad consideradas, siendo especialmente relevante en el sector servicios. Únicamente en 1993, el efecto nacional ha afectado negativamente al VAB castellano-leonés (Tablas 9-12).

Por lo que se refiere al efecto total (Tabla 13), se observa un crecimiento económico continuado, siendo especialmente importante a partir de 1995. Únicamente en 1992 y 1994 este efecto ha tomado valores negativos, reflejando un decrecimiento económico en la comunidad castellano-leonesa con respecto al período anterior.

Años	Ef. Regional	Ef. Sectorial	Ef. Nacional	Ef. Total
1987	-31275,345	13677,367	173893,027	155043
1988	-39072,694	-3862,057	166381,216	123368
1989	-87567,557	-23595,158	158656,680	48153
1990	-105737,013	-341,371	138475,276	32398
1991	-32098,476	-4177,969	79422,0186	43156
1992	-30076,890	-5457,470	27418,094	-7955
1993	179427,046	-4570,581	-25007,760	146728
1994	-96601,602	-22233,266	82213,759	-35348
1995	121152,46	-18767,872	101343,344	203631
1996	-5670,789	28939,666	88438,231	111551
1997	-27476,975	-648,253	144330,617	116194
1998	12823,442	-1594,503	159756,208	170925
1999	12479,931	-14534,175	156618,532	154541
2000	-17979,355	-3555,429	144061,648	122518
2001	-12023,213	-2227,924	162375,342	148110
SUMA	-161835,163	-62949	1758376,237	1533014

Tabla 13. Efectos regional, sectorial y nacional estimados a través de AVE-PMD1 y efecto total (variación interanual en el VAB regional).

El estudio conjunto de los efectos regional, sectorial y nacional agregados y del efecto total (Tabla 13) muestra que el efecto nacional es positivo (excepto en 1993) y de especial importancia, compensando cualquier efecto negativo que hubieran podido causar los efectos regional o sectorial en todos los años estudiados. Únicamente en 1992 y 1994, los efectos regional y sectorial, ambos negativos, han compensado el efecto favorable que el crecimiento económico nacional imprimía en la región.

A lo largo de todo el período analizado, la región no parece disponer de ventajas comparativas con respecto a la economía española. Únicamente en 1995, 1998 y 1999 parecen existir ciertas ventajas en la comunidad, debido fundamentalmente a la agricultura. En cuanto al efecto sectorial, se podría hablar de estructura productiva desventajosa frente al conjunto de la economía española a la largo de todo el período (exceptuando 1987 y 1996), causadas fundamentalmente por la agricultura y la industria.

Este análisis agregado de la variación del VAB regional pone de manifiesto la notabilidad del crecimiento nacional como motor de la economía castellano-leonesa (Rnac positivo), compensando la desfavorable estructura económica de la región con respecto a la economía española en su conjunto

(Rsec negativo) y la ausencia de ventajas comparativas en casi todos los sectores con la excepción de la agricultura (Rreg negativo).

3. CONCLUSIONES

La variación experimentada en el VAB de cierta región puede ser descompuesta en una serie de efectos que permiten describir la actuación de las distintas fuentes de crecimiento. Así, el cálculo de los efectos de la estructura productiva de la región, las ventajas comparativas de determinados sectores en dicha región o el mero arrastre de la economía nacional podrían resultar de interés para comprender qué factores subyacen en el crecimiento regional del VAB.

Aunque existen numerosas técnicas que cuantifican y descomponen los cambios experimentados en cierta magnitud, en el presente trabajo se presenta la metodología que ofrecen los índices Divisia y se recoge una técnica habitualmente utilizada en el campo de la economía regional como el análisis shiftshare o las técnicas de regresión. A través de ellos, se descompone aditivamente la variación experimentada por el Valor Añadido Bruto castellano-leonés en el período 1986-2001.

En primer lugar, los resultados obtenidos a través de los índices Divisia guardan cierta similitud con los obtenidos a través de otras técnicas como el análisis shift-share o la regresión.

En segundo lugar, el efecto nacional se revela como el efecto de mayor magnitud y, por supuesto, positivo salvo crecimiento negativo del VAB nacional. A lo largo de todo el período y exceptuando el año 1993, la magnitud del efecto arrastre ha sido suficientemente importante como para compensar la negatividad de los efectos regional y sectorial. Esto es, el peso de la economía nacional se acrecienta en los últimos años, reduciendo la importancia de la estructura económica regional así como las ventajas comparativas de la comunidad castellano-leonesa.

A la vista de los resultados, se observa que pese a la existencia de ciertas ventajas en la agricultura que contribuyen al crecimiento del VAB castellano-leonés, la región en su conjunto no parece disponer de ventajas comparativas, especialmente en el sector servicios. Además, y aunque con menor peso, la estructura productiva castellano-leonesa ha resultado desfavorable al crecimiento regional debido fundamentalmente a la agricultura y a la industria. Finalmente, dado que la variación total del VAB castellano-leonés ha resultado positiva, este análisis señala la importancia del efecto nacional, efecto que ha resultado suficientemente relevante como para compensar la negatividad de los efectos regional y sectorial.

Los resultados obtenidos a través de cualquiera de las técnicas revelan que el crecimiento del VAB castellano-leonés ha sido, básicamente, consecuencia del efecto de arrastre de la economía nacional. Ni la estructura productiva de la región ni las posibles ventajas comparativas parecen haber sido el motor del crecimiento del VAB regional.

REFERENCIAS

Ang B.W. Decomposition of Industrial Energy Consumption: The Energy Intensity Approach, <u>Energy Economics</u>, Vol. 16, No. 3, 1994, pp. 163-174.

Ang B.W. Multilevel decomposition of industrial energy consumption, <u>Energy Economics</u>, Vol. 17, No. 1, 1995, pp. 39-51.

Arcelus F.J. An Extension of Shift-Share Analysis, Growth and Change, January 1984, pp. 3-8.

Berzeg K. The Empirical Content of Shift-Share Analysis, <u>Journal of Regional Science</u>, Vol.18, 1978, pp. 463-469.

Boyd G., McDonald J.F., Ross M. y Hanson D.A. Separating the Changing Composition of US Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach, <u>The Energy Journal</u>, Vol. 8, No. 2, 1987, pp. 77-96.

Fernández P. y Pérez R. <u>Índices Divisia y Análisis Shift-Share. Una Estimación de los Efectos Nacional, Regional y Sectorial Experimentados por el VAB asturiano</u>, Congreso ASEPELT, La Coruña, 2001.

Fernández P. y Pérez R. <u>Descomposición de la Variación de la Intensidad de Energía Agregada: Una Aplicación al Caso Español, Documentos de trabajo 1/2000, Hispalink-Asturias, 2000.</u>

Howarth R.B., Schipper L., Duerr P.A. y Strøm S. Manufacturing Energy Use in Eight OECD Countries, <u>Energy Economics</u>, Vol. 13, No. 2, 1991, pp. 135-142.

Hulten C.R. Divisia Index Numbers, Econometrica, Vol. 41. No.6, 1973, pp. 1017-1025.

INE, Contabilidad Regional de España, 1995, Instituto Nacional de Estadística, Madrid, 2000.

Jenne C. y Cattell R. Electricity Intensity in UK Industry, <u>Energy Economics</u>, Vol. 5, No. 2, 1983, pp. 114-123.

Knudsen D.C. y Barff R. Shift-Share as a Linear Model, <u>Environment and Planning A</u>, Vol. 23, 1991, pp. 421-431.

Liu X.Q., Ang B.W. y Ong H.L. The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption, The Energy Journal, Vol. 13, No. 4, 1992, pp. 161-177.

Park S.H. Decomposition of industrial energy consumption: an alternative method, <u>Energy Economics</u>, Vol. 14, No. 4, 1992, pp. 265-270.

Pérez R. y Delgado F.J. <u>Análisis Espacial del Crecimiento Regional: El Proyecto Atlas Económico-Digital de</u> Asturias, Documentos de trabajo 1/2000, Hispalink-Asturias, 2000.

Reitler W., Rudolph M. y Schaefer H. Analysis of the Factors Influencing Energy Consumption in Industry: A Revised Method, <u>Energy Economics</u>, Vol. 9, No. 3, 1987, pp. 145-148.